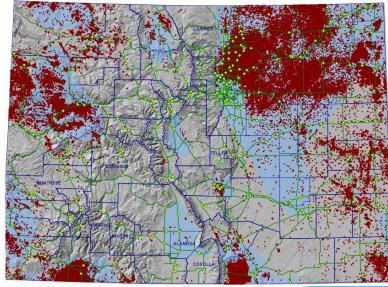

Overview of Colorado Legislation, Regulations and Monitoring Tools -Past, Present, and Future


Gordon Pierce, Technical Services Program Manager 5/26/2022

Major items:

- 1. Ozone
- 2. Air toxics
- 3. Oil and gas development
 - North Front Range area is an ozone non-attainment area
 - Over 50,000 wells
 - Over ½ are in the Denver-Julesberg Basin in NE Colorado
 - Near major cities in Colorado

COLORADO

Legislation

- **>** 2019
 - ► HB19-1261 "Climate Action Plan To Reduce Pollution"
 - SB19-096 "Collect Long-term Climate Change Data"
 - SB19-181 "Protect Public Welfare Oil And Gas Operations"
- **>** 2020
 - SB20-204 "Additional Resources To Protect Air Quality" (Air Quality Enterprise)
 - HB20-1265 "Increase Public Protection Air Toxics Emissions"
- **>** 2021
 - ► HB21-1189 "Regulate Air Toxics"
 - HB21-1266 "Environmental Justice Disproportionate Impacted Community"
- **>** 2022
 - ► HB22-1244 "Public Protections From Toxic Air Contaminants"
 - SB22-193 "Air Quality Improvement Investments"
 - Decision Item

Regulations in 2019 and 2020

- **>** 2019
 - Tank controls
 - Proximity-based Leak Detection
 - Loadout, Sampling, Gauging
- **>** 2020
 - Engines
 - Preproduction Controls
 - Preproduction/Early Production Monitoring

Regulations in 2021

- Control Equipment
 - Metering/Testing
 - Protocol Development Ongoing
- Leak Detection and Repair
 - New frequencies
 - Advanced Screening Workgroup Ongoing (Alt-AIMM)
- Direct Regulation
 - Well Unloading
 - Pigging/Blowdowns
- Midstream Fuel Combustion
 - Steering Committee
- Upstream GHG Intensity
 - How it works
 - Verification Rulemaking

Planned regulations in 2022

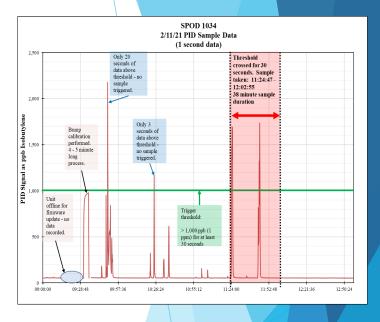
- GHG
 - Establish a recovered methane protocol
 - Establish a greenhouse gas crediting and tracking system in response to SB21-264
- Ozone SIP
 - Severe for 2008
 - Moderate for 2015
 - Associated regulations

Regulation #7: Pre/Early Production Monitoring

- "CONTROL OF OZONE VIA OZONE PRECURSORS AND CONTROL OF HYDROCARBONS VIA OIL AND GAS EMISSIONS" (5 CCR 1001-9)
- Amended September 2020
- ► Goal:
 - To obtain more information regarding potential emissions from pre-production operations (drilling, fracking, millout, flowback, early production)
 - ► To determine potential impacts to human health
 - ▶ To obtain more information on innovative monitoring techniques
- ► VI.C. Air quality monitoring
 - Owners or operators of drilling operations that begin on or after May 1, 2021, must monitor air quality at and/or around the pre-production and early production operations
- 3 objectives listed in the regulation:
 - ▶ Detect, evaluate, and reduce as necessary hazardous air pollutant emissions
 - ▶ Detect, evaluate, and reduce as necessary ozone precursor emissions
 - ▶ Detect, evaluate, and reduce as necessary methane emissions

Regulation #7 - monitoring requirements

- Pollutant(s) and other parameters to be monitored must include at least one of the following:
 - Total VOCs, methane, benzene or BTEX (benzene, toluene, ethyl benzene and xylenes) or other indicator of hydrocarbon emissions
 - Meteorology
- Owners or operators must submit an air quality monitoring plan at least sixty (60) days prior to beginning air quality monitoring
 - ▶ Within 14 days of receiving the plan, the Division will consult local governments within 2000' as part of the review process
 - Owners or operators must receive approval from the Division of the air quality monitoring plan prior to beginning air quality monitoring
- Owners or operators must keep records for a minimum of three (3) years, unless otherwise specified, and upon request make records available to the Division
- Owners or operators must submit monthly reports of monitoring conducted to the Division by the last day of the month following the previous month of monitoring

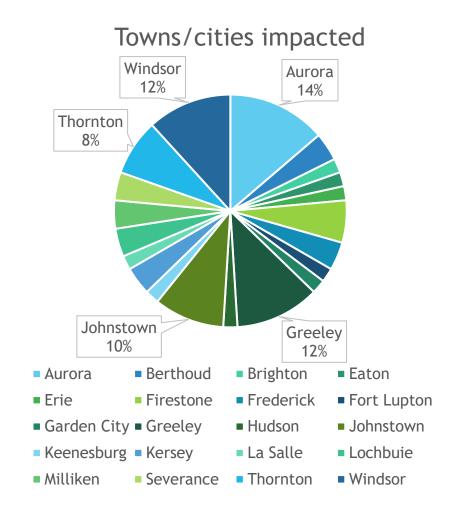

Reg. #7 monitoring plans must include:

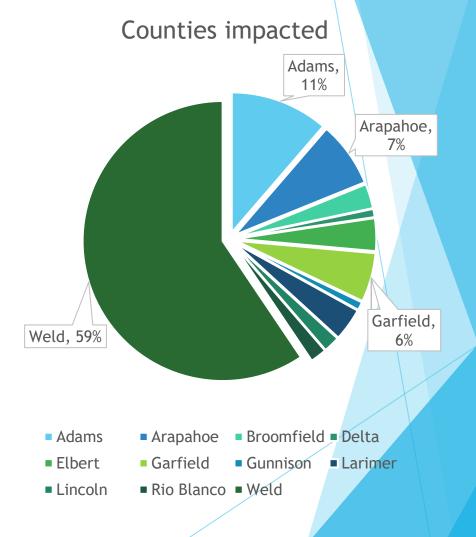
- A description of the monitoring equipment to be deployed
- A description of the meteorological monitoring equipment to be deployed
- The number of monitors and/or sensors to be deployed
- The location and height of the monitoring equipment, including for each phase of operations if location and height of the equipment will change
- A topographic map and plan of the site
- A description of how the placement of monitoring equipment minimizes surface disturbances
- An explanation of how the number and placement of monitoring equipment will be adequate to achieve the desired air quality monitoring objectives
- ▶ The standard operating procedures that will be employed
- The quality control and quality assurance procedures
- ▶ The data system and operating protocol to be used for data collection
- The methods for collecting and analyzing speciated or other samples of chemical constituents

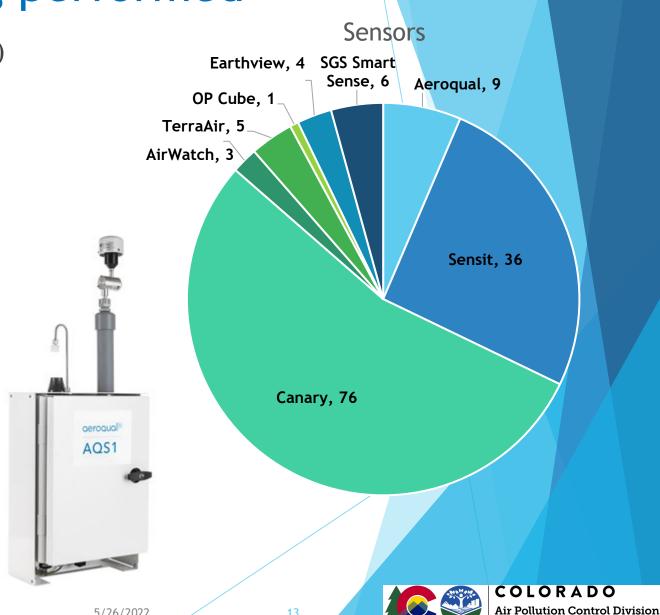
Reg. #7 records and reporting must include:

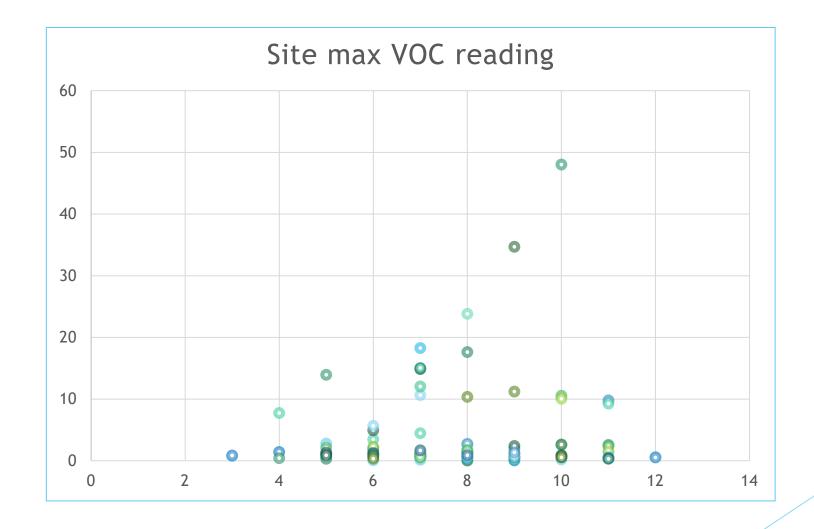
- Monthly reports and the data necessary to inform the monthly reports
- The phase of operation
- Activity logs
- For a period of one year after the monthly report, the underlying raw data associated with each monitor
- API number of the well(s)
- Location of the operations
- The date, time, and duration of any monitoring equipment downtime
- The date, time, and duration of operations malfunctions and shut-in periods or other events investigated for influence on monitoring
- A summary of monitored air quality results, including time series plots as hourly or higher time resolution and a statistical summary
- A description of responsive action(s) taken as a result of monitoring results
- Owners or operators must notify the Division and the local government within forty-eight (48) hours of responsive action(s) taken as a result of recorded values in excess of the response level

Reg. #7 operator monitoring plans/reports


- ► To-date, 149 monitoring plans have been submitted for review/approval
 - ▶ Some using template, some using own format
- Most plans are using sensors for total VOC's (TVOC)
 - One is utilizing a rotating FLIR camera
 - Some also include PM2.5
 - Typically 1 meteorological sensor per wellpad
- Some are adding triggered canisters to get speciated data in plumes
- Some are adding passive tubes for 2-week exposures
- Typically 3-6 sensors per wellpad, including predominant wind directions or nearby residences
- Typically within 150' from edge of pad
 - ► Tall soundwalls can create airflow issues
- Now over 435 monthly reports have been received
- Reports posted on OnBase at https://oitco.hylandcloud.com/CDPHERMPublicAccess/index.html




Reg. #7 operator plans submitted


Reg. #7 monitoring being performed

- Total VOC with photoionization detectors (PID)
 - Canary S
 - Sensit SPOD
 - Aeroqual AQS1
 - Earthview BluBird
 - SGS Smart Sense
 - Praxis/OP Cube
- Total VOC with metal oxide sensors (MOx)
 - WSP Airwatch (now retired)
 - Terra AirGuardian
 - Field Geoservices
- Whole air canisters for VOC analysis
- Sorbent tubes for benzene analysis
- Meteorological sensors

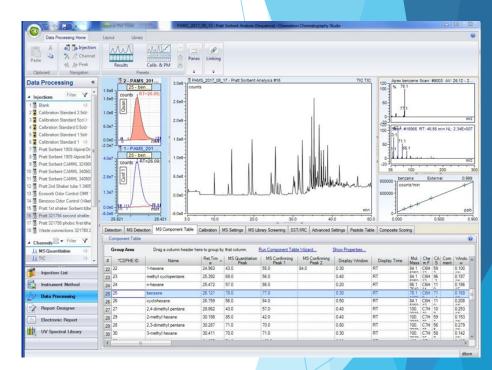
Department of Public Health & Environment

Monitoring data results

Mobile Monitoring and Aerial Campaigns

Colorado Air Monitoring Mobile Lab (CAMML)

- 2015 Governor's Oil and Gas Task Force Report (Recommendation #31b)
 - ► Funding for a mobile laboratory that could be dispatched to defined locations to monitor ambient air quality and to help determine potential sources
- First deployed in 2017
- Custom aluminum trailer
- Diesel Generator or Line Power (preferred)
- ▶ 1 minute resolution: Ozone, oxides of nitrogen, meteorology, PM2.5, PM10, methane, ammonia, hydrogen sulfide
- Volatile organic compounds (VOCs)
 - ▶ Laboratory-grade
 - ► GC-MS or GC-FID (55 compounds)



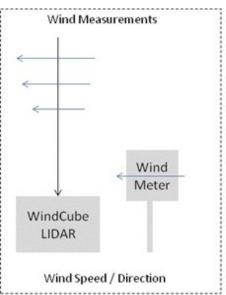
COLORADO

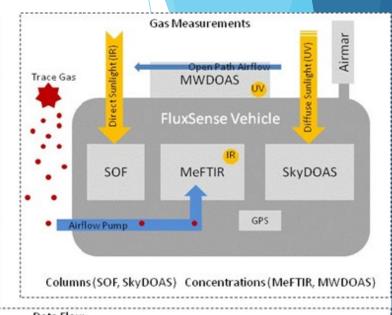
CAMML

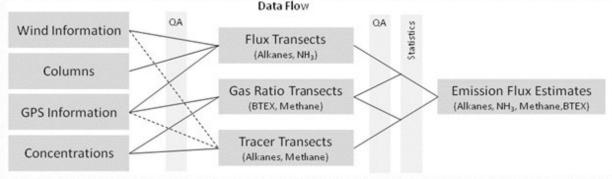
- Deployments based on public health complaints received, proximity to populations, development activities, other factors
- Ideally:
 - ▶ 500-1000' from sound wall
 - Between industry operation and residential areas
 - Power availability
- > 3-4 weeks of measurements per phase of operation
 - Baseline/pre-development
 - Drilling
 - Hydraulic fracturing
 - Flowback
 - Millout
 - Early production
- Data posted at https://www.colorado.gov/airquality/tech_doc_repository.aspx#camml_data
- Summary and risk assessment reports posted at https://cdphe.colorado.gov/oil-and-gas-and-your-health/oil-and-gas-community-investigations

Mobile Van - MOOSE (Mobile Optical Oil and Gas Sensor of Emissions)

- Obtained as part of Mark Martinez and Joey Irwin Memorial Public Projects Fund ("Firestone Settlement")
- First deployed in August 2021
- Ground-level measurements (low ppb detection, 5-15 second):
 - FTIR (Fourier-Transform Infrared spectrometer) for methane, alkanes, alkenes, ammonia, formaldehyde, carbon monoxide, carbon dioxide
 - DOAS (Differential Optical Absorption Spectrometer) for benzene, toluene, ethylbenzene, xylenes, sulfur dioxide
- Vertical/column measurements (low mg/m3 detection, 1-5 second):
 - SOF (Solar Occultation Flux spectrometer) for total alkanes, alkenes, ammor@
 - SkyDOAS for nitrogen dioxide, sulfur dioxide, formaldehyde
- Other measurements:
 - Wind speed, wind direction, GPS






MOOSE

- Combination of measurement types allows for not only detection of emissions, but also flux calculations to estimate the rate of emissions
- Potential leaks that are found will be shared with the operators

Mobile Van - CAT (Colorado Air Toxics)

► Coming soon...

- Required as part of HB21-1189 "Air Toxics Act"
- Designed for community monitoring in a 3-mile radius around specific industrial facilities
- Must measure (at a minimum) air concentrations of:
 - Benzene
 - Hydrogen cyanide
 - Hydrogen sulfide
- Facilities are located in Commerce City/Henderson area (3) and Pueblo (1)
- Must be operational by January 1, 2023

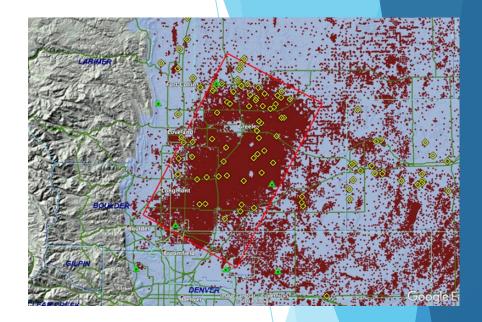
Suncor Refinery
Phillips-66 Terminal
Sinclair Terminal
Goodrich Carbon

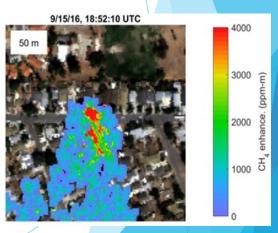
Sensors

- Easy to deploy
- Many are solar powered
- Most have a cellular or wi-fi connection to transmit data in real-time
- ► Fast data, 1-5 minute averages
- No laboratory analysis need for based measurements
- Some have trigger mechanism so whole air canisters or sorbent tube samples can be taken
 - Canister samples typically collected for 1-hour to compare to acute health guideline values

CDPHE Sensors

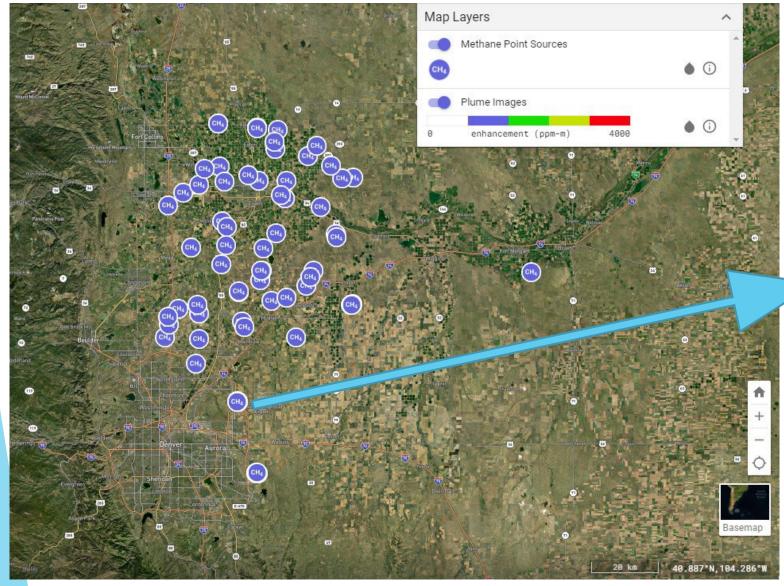
- Sensit SPOD
 - ► Total VOC PID sensor
 - Meteorological sensors
 - Canister trigger option
 - Solar, cellular connection
- **Lunar Outpost Canary**
 - PM2.5 sensor
 - Total VOC PID sensor
 - Meteorological sensors
 - Canister trigger option
 - Solar, cellular connection
- PurpleAir
 - PM2.5 sensor
 - Line power, wi-fi connection
 - Easy-access map

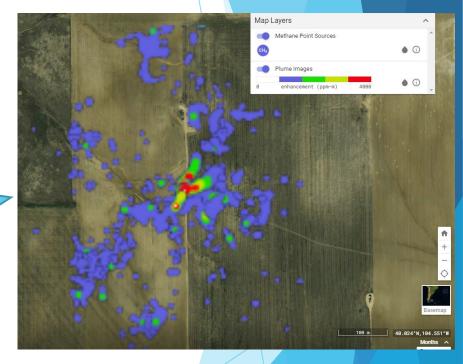

Aerial surveys


- Can cover large areas quickly
- Can see individual sources
- Mass balance flights to get estimates of total amount of emissions in an area
- "Lawnmower" flights to see individual sources
- Instrumentation can include:
 - Methane
 - Ethane
 - VOC's
 - Oxides of nitrogen
 - Others

Fall 2021 aerial surveys

- Obtained as part of Mark Martinez and Joey Irwin Memorial Public Projects Fund ("Firestone Settlement")
- University of Arizona/JPL
 - Methane
 - Super emitters > 10 kg/hr
- Universities of Colorado and Maryland
 - CAMS-2 fast-ethane measurements
 - PTR-TOF-MS for fast BTEX measurements
 - Methane, NOx, carbon dioxide, meteorology
- Scientific Aviation
 - Flights over 4+ years
 - Flux/Mass Balance efforts for comparison with NOAA efforts
 - Targeted spirals over high emitting facilities
- Colorado State University
 - Compile current inventory and activity data
 - Populate the Methane Emissions Evaluation Tool (MEET)




Duren, et al., 2019

2021 methane aerial surveys

https://carbonmapperdata.org/

Lessons Learned and Next Steps

Lessons

- Different oil and gas development activities have different emissions
 - Drilling fluid being used can be seen on emissions
- Total VOC sensors are a good way to determine if there are high possible emissions from a source
- Sensors are a good way to determine what is the direction to high emitting sources
- Need to have individual compound speciation to look at potential risks
- Seeing some high VOC spikes on industry Regulation #7 monitoring
 - Allows operators to adjust practices to decrease emissions and protect public health
- Aerial surveys can see sources where it is hard to get to on the ground
- Aerial surveys can cover large areas quickly and efficiently to see large emitters and leaks
 - Inform operators to conduct repairs rapidly

Next steps

- Faster data turn-around
- Better data systems
 - View data and reports
 - Download data for analysis
- More aerial surveys
 - Include drones as well as aircraft
- Additional mobile van
- Additional fixed air monitoring sites
 - VOC's
 - Nitrogen oxides
- Community monitors
- Sensors

