JISEA Joint Institute for Strategic Energy Analysis

Clean Energy Technologies for Economic and Environmental Transitions

Air & Waste Management Association

EPA Region 8 Building

19 June 2019

Jill Engel-Cox, Ph.D. Director, Joint Institute for Strategic Energy Analysis National Renewable Energy Laboratory

COLORADOSCHOOLOFMINES

Mission: NREL advances the science and engineering of energy efficiency, sustainable transportation, and renewable power technologies and provides the knowledge to integrate and optimize energy systems.

Example Technology Areas:

- 1800 employees, plus 400 postdoctoral researchers, interns, visiting professionals
- 327-acre campus in Golden, Colorado & 305-acre National Wind Technology Center 13 miles north
- 61 R&D 100 awards. More than 1000 scientific and technical materials published annually

www.nrel.gov/about

JISEA

Joint Institute for Strategic Energy Analysis

Connecting technologies, economic sectors, and continents to catalyze the transition to the 21st century energy economy.

Founding Members

COLORADOSCHOOLOFMINES.

Massachusetts Institute of Technology

STANFORD UNIVERSITY

Outline

- Energy Markets and Trends
- Clean Energy Technologies
 - Solar Photovoltaics
 - Wind Turbines
- Future Transitions and Discussion

Outline

- Energy Markets and Trends
- Clean Energy Technologies
 - Solar Photovoltaics
 - Wind Turbines
- Future Transitions and Discussion

Clean Energy Is Diverse

Global share of renewable energy

Estimated Renewable Energy Share of Global Electricity Production, End-2017

Source: REN21 Renewables 2018 Global Status Report, http://www.ren21.net/gsr-2018/

Global share of renewable energy

Estimated Renewable Share of Total Final Energy Consumption, 2016

Source: REN21 Renewables 2018 Global Status Report, http://www.ren21.net/gsr-2018/

Global growth of renewable energy

Global Renewable Power Capacity, 2007-2017

Source: REN21 Renewables 2018 Global Status Report, http://www.ren21.net/gsr-2018/

Electricity Trending to Gas and Renewables

Power sector is undergoing profound transformation, shifting from coal to natural gas and renewable power generation.

Source: United States Energy Information Agency, Today in Energy, 18 January 2019

JISEA—Joint Institute for Strategic Energy Analysis

Electricity Trending to Gas and Renewables

Colorado Electricity Generation 1990-2018

Source: Your Energy Colorado, http://yourenergy.extension.colostate.edu/fuels-electric-grid/

JISEA—Joint Institute for Strategic Energy Analysis

Solar Generation as a Percentage of Total Generation, 2014-2018, by U.S. State

Note: EIA monthly data for 2018 are not final. Additionally, smaller utilities report information to EIA on a yearly basis, and therefore, a certain amount of solar data has not yet been reported. "Net Generation" includes DPV generation. Net generation does not take into account imports and exports to and from each state and therefore the percentage of solar consumed in each state may vary from its percentage of net generation.

Source: U.S. Energy Information Administration, "Electricity Data Browser." Accessed April 3, 2019.

Source: NREL, Q4 2018/Q1 2019 Solar Industry Update, May 2019. https://www.nrel.gov/docs/fy19osti/73992.pdf

Cost of Renewable & Traditional Electricity Equalizing

2018 ATB LCOE range by technology for 2016 based on R&D financial assumptions

Source: National Renewable Energy Laboratory Annual Technology Baseline (2018), http://atb.nrel.gov

Cost of Renewable Electricity at Auctions Driving Decrease

Source: IRENA Renewable Energy Auctions: Analysing 2016 (2017)

Cost of Renewable Electricity at Auctions Driving Decrease

Xcel Energy 2017 auction for Colorado: 430 bids (350 for renewable energy)

				Median Bid			
	#of		# of	Project	Price or	Pricing	
Generation Technology	Bids	Bid MW	Projects	MW	Equivalent	Units	
Combustion Turbine/IC Engines	30	7,141	13	2,466	\$ 4.80	\$/kW-mo	
Combustion Turbine with Battery Storage	7	804	3	476	6.20	\$/kW-mo	
Gas-Fired Combined Cycles	2	451	2	451		\$/kW-mo	
Stand-alone Battery Storage	28	2,143	21	1,614	11.30	\$/kW-mo	
Compressed Air Energy Storage	1	317	1	317		\$/kW-mo	
Wind	96	42,278	42	17,380	\$ 18.10	\$/MWh	
Wind and Solar	5	2,612	4	2,162	19.90	\$/MWh	
Wind with Battery Storage	11	5,700	8	5,097	21.00	\$/MWh	
Solar (PV)	152	29,710	75	13,435	29.50	\$/MWh	
Wind and Solar and Battery Storage	7	4,048	7	4,048	30.60	\$/MWh	
Solar (PV) with Battery Storage	87	16,725	59	10,813	36.00	\$/MWh	
IC Engine with Solar	1	5	1	5		\$/MWh	
Waste Heat	2	21	1	11		\$/MWh	
Biomass	1	9	1	9		\$/MWh	
Total	430	111,963	238	58,283			

RFP Responses by Technology

Source: Xcel, https://www.documentcloud.org/documents/4340162-Xcel-Solicitation-Report.html

Outline

- Energy Markets and Trends
- Clean Energy Technologies
 - Solar Photovoltaics
 - Wind Turbines
- Future Transitions and Discussion

Solar energy is diverse

BATTERIES & STORAGE

SOLAR PHOTOVOLTAICS (PV) Residential: 1-10 kW scale

Commercial: 1-20 MW

Utility: 50-1000 MW

CONCENTRATING SOLAR

PEROVSKITES (New!)

Images from https://images.nrel.gov/

PV System Installation Prices

Source: NREL. The U.S. Solar Photovoltaic System Cost Benchmark: Q1 2018, https://www.nrel.gov/docs/fy19osti/72399.pdf

Colorado Solar Development

Colorado Rank – 12th Installed: 1184 MW Percentage of In-State Energy Production: 2.96% Equivalent U.S. Homes Powered: 241,000 Manufacturers: 49. Installers: 231

Sources: NREL and SEIA, https://www.seia.org/sites/default/files/2019-03/Federal_2019Q1_Colorado.pdf

Supply chain of PV panels

Source: Benchmarks of Global Clean Energy Manufacturing, CEMAC, 2017, https://www.manufacturingcleanenergy.org/benchmark/.

2017 Global PV Manufacturing: Top 373 Companies

Balance of trade varies across supply chain (2016 data)

Economies that are net importers of end products may be major exporters of upstream processed materials and subcomponents of those same technologies.

Outline

- Energy Markets and Trends
- Clean Energy Technologies
 - Solar Photovoltaics
 - Wind Turbines
- Future Transitions and Discussion

Wind Turbines - Onshore

Peetz Table Wind Energy Center

- Peetz, Colorado
- 575 MW

Cedar Creek Wind Farm

- Grover, Colorado
- 550 MW

Wind Turbines – Offshore

Westermeerwind Wind Farm

- Noordoostpolder, Netherlands
- 144 MW

Horn Rev Wind Farm

- West coast of Denmark
- 160 MW

Wind Market Growth Driven by Price Declines

Source: DOE 2016: Revolution...now, the future arrives for five clean energy technologies; AWEA, https://www.awea.org.

U.S. & Colorado Wind Market (installed capacity, MW)

Colorado Rank – 8th for capacity Installed: 3703 MW (2,248 turbines) Percentage of In-State Energy Production: 17.3% Equivalent U.S. Homes Powered: 944,100

Wind Capacity by State

Source: American Wind Energy Association, https://www.awea.org/wind-energy-facts-at-a-glance/, https://www.awea.org/Awea/media/Resources/StateFactSheets/Colorado.pdf

Wind Machines – Scale, Capacity Factor Increasing, Manufacturing Costs Declining

Avg. Wind Turbine Capacity Factors (% of capacity) by Build Year

1998-2001: 24.5% 2004-2011: 32.1% 2014-2015: 42.6%

Compare: Natural Gas Plant: 56%; Coal Fired Plant: 53%; Nuclear: 92%; Solar Photovoltaic: 27%

MAXWELL HENDERSON Los Angeles Times

Wind Energy Potential Increasing to More Places

Outline

- Energy Markets and Trends
- Clean Energy Technologies
 - Solar Photovoltaics
 - Wind Turbines
- Future Transitions and Discussion

Future: NREL electricity generation scenarios

Generation projections across 42 scenarios: NREL 2018 Standard Scenarios Report: A U.S. Electricity Sector Outlook, www.nrel.gov/analysis/data_tech_baseline.html

JISEA—Joint Institute for Strategic Energy Analysis

NREL electricity scenario mid-case generation mix

Generation by technology type in the Central Scenario, from: NREL 2018 Standard Scenarios Report: A U.S. Electricity Sector Outlook, <u>www.nrel.gov/analysis/data_tech_baseline.html</u>

Electrification Futures Study

All Figures from NREL's Electrification Futures Study: www.nrel.gov/efs

Electrification Futures Study

All Figures from NREL's Electrification Futures Study: <u>www.nrel.gov/efs</u>

Clean Power Technologies for Oil & Gas Industry Operations: Electrification of the Wellpad and Platform via Microgrids

- Electrification of all equipment at wellpad connected via microgrid
- Power could consist of:
 - Field/Flare Gas fired generator
 - Solar PV/wind systems
 - Fuel cells
 - Energy Storage
 - Hydrogen
 - Batteries
 - Grid power (or offgrid)
- Benefits:
 - Resiliency during outages
 - Optimize for least cost
 - Reduce emissions
- Leverage work on
 - Remote bases & communities
 - Islands

Renewables and Nuclear Hybrid Energy Solutions

Co-location of Wind/PV and Agriculture

Floating Solar PV (FPV)

- Analysis of cost, siting, and O&M tradeoffs
- GIS-based technical/market potential analysis for the U.S.
- Installing floating solar photovoltaics on the more than 24,000 man-made U.S. reservoirs could generate about 10 percent of the nation's annual electricity production
- Reduces evaporation and algae growth

Top image from https://images.nrel.gov/

Source: Spencer et al. 2018, Environmental Science & Technology, https://www.nrel.gov/news/press/2018/nrel-details-great-potential-for-floating-pv-systems.html.

Circular Economy: Growing PV Waste Will Need Technology and Policy Solutions

Conclusion and Discussion – Colorado

Trends and Potential Future Scenarios:

- Colorado moving toward cleaner and lower cost energy (renewables and gas) with potential for growth in manufacturing, extraction, deployment
- Increasing intersection of renewable energy with other sectors of local economy:
 - Oil & gas industry
 - Agriculture
 - Manufacturing
- Potentially increased electrification resulting in higher demand for power and higher-value use of hydrocarbon resources

Questions and Discussion Thank you!

www.jisea.org www.nrel.gov

Disclaimer

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The views expressed in the presentation do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

This presentation was developed to meet an immediate need and was based on the best information the analysts had available within timing constraints. The analysis was prepared with information available at the time the analysis was conducted. The analysis does not constitute a comprehensive treatment of the issues discussed or a specific advisory recommendation to the jurisdiction(s) considered.

This presentation was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.